I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

1.(i) Write down the properties of orthogonal matrix.

- (ii) Write the nature of $2y_1^2 + 4y_2^2 + 5y_3^2$.
- (iii) If A and B are non-singular matrices of same order, show that AB and BA have same eigen values.
- (iv) Find the area of loop of the curve $r^2 = a^2 \cos 2\theta$
- (v) Find the moment of inertia of a circle A of radius R relative to the centre O.
- (vi) Evaluate $\int_0^\infty \frac{x^6(1-x^{10})dx}{(1+x)^{24}}$
- (vii) If F is a conservative vector field show that curl F= 0.
- (viii) Write down the physical interpretation of Green's theroem.

[3+3+3+3+3+2+3+2]

PART - B

- 2.(a) Reduce the matrix $\begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 4 & 5 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ to normal form and find its rank.
- (b) Solve, by Gauss-Seidal method, the equations

$$9x - 2y + z - t = 50$$

$$x - 7y + 3z + t = 20$$

$$-2x + 2y + 7z + 2t = 22$$

$$x + y - 2z + 6t = 18$$

[8+8]

3. Diagonalise the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and hence find A^4 .

[16]

- 4.(a) Find the volume of solid generated by the revolution of the cardioid $r = a(1 + \cos \theta)$ about $\theta = 0$.
 - (b) Evaluate $\iint_R (\sqrt{xy} y^2) dx dy$ where R is triangle with vertices at (0,0), (10,1), (1,1). [8+8]
- 5.(a) Show that $\int_0^1 x^3 \left[log \left(\frac{1}{x} \right) \right]^4 dx = \frac{3}{128}$.
 - (b) Prove that $\int_0^4 \sqrt{x} (4-x)^{\frac{3}{2}} dx = 64\beta(\frac{3}{2}, \frac{5}{2}).$

[8+8]

Page 1 of 2

- 6.(a) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2, -1, 2)
 - (b) Prove that $\nabla \left[\nabla \cdot \frac{\vec{r}}{r} \right] = \frac{-2}{r^3} \vec{r}$

[8+8]

- 7.(a) Use Stokes theorem to evaluate the integral $\int_C \mathbf{A} \cdot d\mathbf{r}$ where $\mathbf{A} = 2y^2i + 3x^2j (2x + z)k$, and C is the boundary of the triangle whose vertices are (0, 0, 0), (2, 0, 0), (2, 2, 0)
 - (b) Find the workdone in moving a particle in the force field $\mathbf{F} = 3x^2i + j + zk$ along the straight line from (0, 0, 0) to (2, 1, 3)

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Express $\begin{bmatrix} 3 & 7 \\ 4 & 5 \end{bmatrix}$ as sum of a symmetric and skew-symmetric matrices.
 - (ii) When does a non homogeneous system consistent?
 - (iii) Define the latent root and latent vector.
 - (iv) Find the volume of a sphere of radius 'a'.
 - (v) Find the moment of inertia of a hallow sphere about a diameter. Its external and internal radii being 5 meters and 4 meters.
 - (vi) Evaluate $\int_0^\infty \sqrt{xe^{-x^3}} dx$
 - (vii) If A is a vector function, find Div (Curl A)
 - (viii) Write down the physical interpretation of Stoke's theroem.

[3+2+3+3+3+3+3+2]

PART - B

- 2.(a) Reduce the matrix $\begin{bmatrix} 3 & 1 & 4 & 6 \\ 2 & 1 & 2 & 4 \\ 4 & 2 & 5 & 8 \\ 1 & 1 & 2 & 2 \end{bmatrix}$ to Echelon form and find its rank.
 - (b) Solve, by LU Decomposition method, the equations

$$x + 2y + 3z = 10$$

 $3x + y + 2z = 13$
 $2x + 3y + z = 13$.

[8+8]

3. Verify Cayley-Hamiltion theorem for $A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & -1 \\ 2 & 0 & 3 \end{bmatrix}$ and hence find A^{-1} .

[16]

- 4.(a) Find the length of the loop of the curve $3ay^2 = x(x-a)^2$
 - (b) Find the volume of the solid generated by the revolution of the cardioid $r = a(1 + cos\theta)$ about the initial line $\theta = 0$.

- 5.(a) Show that $\int_0^1 [x \log(x)]^3 dx = \frac{-3}{128}$.
 - (b) Evaluate $4 \int_0^\infty \frac{x^2 dx}{1+x^4}$ using $\beta \Gamma$ functions. [8+8]

Subject Code: R13202/R13

Set No - 2

- 6. (a) Find the work done in moving a particle in the force field $\mathbf{F} = 2x^2i + (2yz x)j + yk$ along the space curve $x = 3t^2, y = t, z = 3t^2 t$ from t=0 to t=1.
 - (b) Prove that $\operatorname{curl}(a \times b) = a \operatorname{div} b b \operatorname{div} a + (\vec{b} \cdot \nabla)a (a \cdot \nabla)b$
- 7.(a) Verify the divergence theorem for $\mathbf{F} = 4xy\mathbf{i} y^2\mathbf{j} + xz\mathbf{k}$, over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
 - (b) Evaluate $\iint_S \mathbf{A} \cdot \mathbf{n} \, ds$ where $\mathbf{A} = yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 9$ which lies in the first octant.

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours Max. Marks: 70

Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i)Define rank of a matrix.

(ii) Write the nature of $-3y_1^2 - 2y_2^2 - y_3^2$

(iii) Find the matrix of the quadratic form $q = x^2 - 6xy + 3y^2$.

(iv) Find the length of the arc $ay^2 = x^3$ from the vertex to the ordinate x=5a.

(v) Find the moment of inertia of a circle A of radius R relative to the centre O.

(vi) Define β and Γ functions and write the relation between them.

(vii) Show that $V = 3y^4z^2i + 4x^3z^2j + 6x^2y^3k$ is solenoidal.

(viii) Write down the physical interpretation of Gauss's divergence theorem.

PART - B

2.(a) Find the inverse of a matrix $\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \end{bmatrix}$, using elementary operations.

(b) If consistent, solve the system of equations

$$x + y + z + t = 4$$

 $x - z + 2t = 2$
 $y + z - 3t = -1$
 $x + 2y - z + t = 3$.

[8+8]

Find the latent values and latent roots of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -1 & -2 \end{bmatrix}$. 3.(a)

Verify Cayley-Hamilton theorem and hence find A^{-1} if $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & 1 & 2 \end{bmatrix}$.

[8+8]

Find the perimeter of the cardioids $r = a(1 - \cos \theta)$. 4.(a)

Find the moment of inertia of the area bounded by the curve $r^2 = a^2 \cos 2\theta$ about its (b) axis.

[8+8]

5.(a) Evaluate $\int_0^\infty 3^{-4x^2} dx$. (b) Evaluate $\int_0^a x^4 \sqrt{a^2 - x^2} dx$. [8+8]

Page 1 of 2

- 6. (a) Find the directional derivative of $\emptyset(x, y, z) = xy^2 + yz^2$ at the point (2, -1, 1) in the direction of i + 2j + 2k
 - (b) Prove that $Div(A \times B) = B. curl A A. curl B$

[8+8]

- 7.(a) Evaluate using the divergence theorem $\iint_S (\mathbf{F}.\mathbf{n}) d\mathbf{s}$ where S is the surface of the sphere
 - $x^2 + y^2 + z^2 = b^2$ in the first octant and $\mathbf{F} = y\mathbf{i} + z\mathbf{j} + x\mathbf{k}$ (b) If $\mathbf{A} = (3xy 2y^2)\mathbf{i} + (x y)\mathbf{j}$, evaluate $\int_C \mathbf{A} \cdot d\mathbf{r}$ along the curve C in xy –plane given by $y = x^3$ from the point (0, 0) to (2, 8)

Subject Code: R13202/R13

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-III

(Common to All Branches)

Time: 3 hours Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B

PART-A

Show that $\begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5 \end{bmatrix}$ is idempotent. 1.(i)

- (ii) When does the non homogeneous system consistent?
- (iii) Define positive definite, negative definite and indefinite.
- (iv) Find the volume of a sphere of radius 'a'.
- Find the surface area of the solid generated by the revolution about the x-axis of the area bounded by the curves y = f(x), the x-axis the ordinates x = a, x = b.
- (vi) Define Gamma function and Beta function and write the relation between them.
- (vii) Find the normal to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2, 2, 3)
- (viii) Write the statement of Green's theroem.

[3+3+3+3+3+2+3+2]

- 2.(a) If $A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2 \end{bmatrix}$, find two non-singular matrices P and Q such that PAQ is in
 - (b) Test for consistency and solve

$$5x + 3y + 7z = 4$$
$$3x + 26y + 2z = 9$$
$$7x + 2y + 10z = 5.$$

[8+8]

Reduce the quadratic form $q = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 - 2x_2x_3 + 6x_3x_1$ into a 3. canonical form by diagonalising the matrix of the quadratic form.

[16]

- 4.(a) Trace the curve $y = \frac{x^2 + 2x}{x+1}$.
 - (b) Find the volume of the solid generated by the revolution of the curve $xy^2 = 4(2 - x)$ about y-axis.

[8+8]

- 5.(a) Evaluate $\int_0^2 x^7 (16 x^4)^{10} dx$.
 - (b) Evaluate $4 \int_0^\infty \frac{x^2 dx}{1+x^4} \text{ using } \beta \Gamma \text{ functions.}$

- 6. (a) Show that the vector $[(x^2 yz)i + (y^2 zx)j + (z^2 xy)k]$ is irrotational and find the scalar potential.
 - (b) Find the acute angle between the surface $xy^2z = 2$ and $x^2 + y^2 + z^2 = 6$ at the point (2, 1, 1).
- 7.(a) Verify the divergence theorem for $\mathbf{F} = 4xy\mathbf{i} y^2\mathbf{j} + xz\mathbf{k}$, over the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.
 - (b) Evaluate $\iint_S (\boldsymbol{curl} \, \boldsymbol{A}) \cdot \boldsymbol{n} \, ds$ where $\boldsymbol{A} = y\boldsymbol{i} + (x 2z)\boldsymbol{j} xy\boldsymbol{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 4$ above the *xy-plane*.